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ABSTRACT 
The results of a wide F.E.M. analysis on the imperfection sensitivity of axially loaded alumin-
ium cylinders are used to investigate buckling modes occurring in case of relatively thick cyl-
inders (R/t < 200 ÷ 250). The combined effect of geometrical imperfections, inelastic behav-
iour of material and boundary conditions is considered in order to set-up a refinement of rules 
given in prEN1993-1-6 dealing with steel shells. The proposal allows for a further exploita-
tion of the cylinder buckling strength in plastic range, which is why it seems rather suited to 
applications in the field of civil engineering. To this purpose, a special requirement on the ini-
tial allowable imperfection level is defined, corresponding to a quality class higher than EC3 
class A. Because of its features, the proposal presented herein could be profitably used for the 
new Part 1-5 “Supplementary rules for shell structures” of Eurocode 9 (prEN1999-1-5), pres-
ently under development, which is the very first codification issue at European level dealing 
with aluminium shell structures. 

 
 

1. INTRODUCTION 
 

Two main problems have traditionally characterised and troubled both research and codifica-
tion on shell structures. On one hand, the actual difficulty to face the strong imperfection sen-
sitivity of shells by means of simple design rules suitable for codification purposes; on the 
other hand, the problem to take into proper account the effect of the inelastic behaviour of ma-
terial on both buckling behaviour and ultimate load. As a consequence of this, the state of 
codification appeared for long time rather incoherent, with a rather unsatisfactory treatment of 
the afore mentioned aspects. As far as the effect of imperfection is concerned, significant ad-
vances have been recorded in the latest years, due to the provisions given in the part of Euro-
code 3 dealing with steel shells (prEN1993-1-6) [1,2]. In this code, the actual imperfection 
magnitude is allowed for by means of suitable quality classes defined according to the initial 
imperfection level of the shell. Within each class, the effect of imperfection is evaluated 
through the traditional "Lower Bound Design Philosophy", according to which a knock-down 
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factor of buckling loads, denoted by α, is fitted as lower limit of the scattered experimental 
data. Nevertheless, this dependence is mostly related to the imperfection magnitude rather 
than to its actual distribution alongside the shell surface. Referring to the material inelastic 
behaviour, its effect is taken into account in the code by means of a regression curve, which 
does not permit to distinguish between materials with different inelastic features. Also, the 
particular feature of plastic buckling, namely the axisymmetric “elephant foot” buckling 
mode, is not allowed for in the code, despite its different (lower) imperfection sensitivity 
compared with the elastic “diamond shaped” elastic buckling mode. This aspect is particularly 
important for round-house-type materials, namely stainless steels and aluminium alloys, 
whose behaviour is peculiarly hardening and is characterised by significant inelastic deforma-
tions before the conventional yield point. 

Based on these considerations, this paper wants to represent an attempt to refine the EC3 
imperfection sensitive approach, in order to allow for the specific features of plastic buckling. 
First of all, the conditions for the onset of plastic buckling are investigated by means of non 
linear F.E.M. analysis, carried out with the ABAQUS code. To this purpose, a wide paramet-
ric analysis on aluminium alloy circular cylinders under axial loaded has been performed, 
aimed at highlighting the quite peculiar imperfections sensitivity of such structures when plas-
tic buckling occurs. Then, the numerical results have been evaluated in the view of codifica-
tion, with the purpose to define a possible approach to buckling curves in which due account 
of precritical strain is taken. This led to the introduction of a further imperfection class, placed 
above EC3-class A, characterised by purely plastic buckling and, hence, by a reduced imper-
fection sensitivity compared with elastic buckling. As this would mostly involve relatively 
thick cylinders, it is thought that it could be of particular interest in the field of civil applica-
tions. Such proposal could be profitably used for the prEN1999-1-5 “Supplementary rules for 
shell structures” of Eurocode 9, which is presently under development within the activity of 
the CEN/TC250-SC9 Committee (Chairman F.M. Mazzolani). This new part of EC9, mod-
elled along the existing prEN1993-1-6 dealing with steel shells, is the very first codification 
issue at European level dealing with aluminium shell structures and, thus, could profit of the 
results achieved in this research. 

 
 

2. BEHAVIOURAL ASPECTS OF SHELL PLASTIC BUCKLING 
 

As well known, the most important aspect of the buckling behaviour of axially loaded cylin-
ders is their high imperfection sensitivity, due to the asymmetric stable-unstable response at 
bifurcation point (Figure 1a). This can involve a more or less great reduction of the actual 
buckling loads compared with the theoretical predictions, depending on the R/t ratio as well as 
on both imperfection magnitude and distribution. Most of the existing data confirm that the 
greatest imperfection sensitivity is typical of thin cylinders (R/t > 300 ÷ 500), which  fail in 
purely elastic range. Nevertheless, both theoretical and numerical investigations show that 
imperfections can play an important role also in case of thicker shells (R/t < 200), in which 
the interaction between imperfections and plasticity effect can occur, with a strong influence 
on both buckling modes and postcritical behaviour. 

The buckling behaviour of axially loaded cylinders is characterised by a twofold feature. In 
case of elastic buckling, the structure generally fails at a load much below the bifurcation 
load, giving place to the typical asymmetric "diamond shaped" postcritical pattern (Figure 1b), 
with predominant inward buckles, mostly located in the intermediate section of the cylinder; 
in this case, an as little as negligible influence of the boundary condition is usually observed. 



When significant plastic deformations arise before buckling, namely in thicker shells, the de-
flected shape at buckling is completely different, consisting in one or two outward axisymmet-
ric folds placed close to the cylinder loaded ends (Figure 1c). In this case the buckling behav-
iour is deeply influenced by the boundary conditions, as well as by the plastic deformations 
arising after buckling, which strongly reduce the load bearing capacity. In this case, the shell 
imperfection sensitivity is much different, being affected by the plastic flow in material rather 
than by the geometrical non linear effect of surface imperfections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 1: The basic critical and postcritical equilibrium paths of axially loaded cylinders (a); elastic buckling pat-
tern (b); plastic buckling pattern (c). 

 
Relatively few attempts to investigate plastic buckling exist in technical literature on shells. 

The majority of them is concerned with experimental tests without analysing the influence of 
imperfections on the buckling mode. An exhaustive theoretical study on the effect of an axi-
symmetric imperfection on inelastic buckling of axially compressed cylinders was made by 
Gellin in 1979 [3]. It may be considered as an extension to the inelastic case of the well 
known results obtained by Koiter [4] for the elastic case. Nevertheless, contrary to the ex-
perimental observations, the postcritical response calculated by Gellin is always asymmetric 
("diamond shaped"). On the other hand, according to the bifurcation approach followed by 
Gerard (1962) [5], axisymmetric buckling always occurs in an imperfection-free cylinder 
when any small precritical plastic deformation arises in the shell wall. Nevertheless, both ex-
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perimental and numerical investigation show that, even though an axisymmetric instability is 
predicted theoretically, the nature and magnitude of imperfections can play a significant role 
in activating postbuckling paths which are different from the expected ones. In other words, 
the shell postbuckling response can be even asymmetric if, for example, the initial imperfec-
tion is directed according to elastic asymmetric critical mode, as well as if it contains some 
initial inward deflections. At the same time, it should be considered that, for comparatively 
small imperfections, the predicted fully axisymmetric buckling would occur, regardless of the 
actual imperfection distribution. In such a case, the little imperfection magnitude allows for 
comparatively greater precritical plastic deformations, which make easier the onset of axi-
symmetric buckling. All these observations lead to believe that, for some types of initial im-
perfections, a limit value of imperfection exists beyond which the postbuckling pattern turns 
to asymmetric. 

From the technical point of view, it is important to calculate this limit as a function of both 
geometry and material properties, being both buckling and postbuckling strength strongly af-
fected by the critical mode. A recent development in the study of imperfection sensitivity of 
relatively stocky cylinders in compression has been made by Mandara [6], Mandara & Maz-
zolani [7] and Mazzolani et al. [8,9,10,11] by means of F.E.M. simulation. The analysis pre-
sented herein, similarly to those shown in [8,9,10,11], is based on the non linear ABAQUS 
F.E.M. Code [12] to highlight the influence of both plasticity and imperfections on the ulti-
mate load and postcritical behaviour of stocky aluminium alloy cylindrical shells subjected to 
axial compression. 
 

 
3. DESCRIPTION OF THE PARAMETRIC ANALYSIS 

 
3.1. General 
R/t and L/R values have been chosen in order to cover cylinders characterised by elasto-plastic 
buckling, namely R/t = 50, 100, 200 and L/R = 2. A typical F.E.M. mesh of the structural 
model is visible in Figure 1b,c. Three types of alloys have been considered (Table 1), chosen 
according to the distinction between Hardening alloys and Heat-treated alloys, already consid-
ered in the European Recommendations on Aluminium Alloy Structures, and also introduced 
in the ENV1999-1-1 with slight modifications (Strong hardening and Weak hardening alloys). 
The exponent nR.O. of the Ramberg-Osgood law has been evaluated by assuming nR.O. = 
f0.2/10, with f0.2 expressed in N/mm2 (Mazzolani [13]). A further group of alloys with higher 
mechanical features (f0.2 = 300N/mm2 and nR.O. = 30) has been considered in order to cover 
high strength alloys (e.g. the 6000 and 7000 alloy series). 

A static analysis of the unstable structural behaviour has been performed by means of 
F.E.M. simulation. In this case the limit load of the imperfect structure is evaluated together 
with the postcritical response as a function of the initial imperfection. Such a kind of approach 
is suitable when no snap-through or mode jumping is expected, as usually happens in the case 
of relatively thick cylinders which buckle in plastic range. It is worthy to be observed that in 
case of very thin shells, which collapse in elastic range, snap-through and mode jumping are 
liable to occur. In this case, due to the sudden changes in the postcritical equilibrium configu-
rations, the static approach could be inaccurate due to the strong influence of both inertia 
forces and load application procedure. For this reason, a fully non linear dynamic analysis of 
the cylinder should be performed in this case. When thick cylinders are faced, the difference 
as respect to a more complex dynamic approach is unessential up to the limit load is reached, 
the evaluation of the ultimate load bearing capacity being possible with a more cost effective 



static analysis. Moreover, the use of a quasi-static procedure enables to make the buckling re-
sponse independent of the possible testing procedures, by highlighting the postbuckling equi-
librium paths.  

The F.E.M. analysis has been carried out by means of the ABAQUS code using the RIKS  
method, for the solution algorithm, the *DEFORMATION PLASTICITY option for material 
law and four-node, reduced integration S4R5 shell elements. The ABAQUS option 
*DEFORMATION PLASTICITY has been adopted, as it is slightly more conservative than 
the option *PLASTIC. One could observe that the use of *DEFORMATION PLASTICITY 
option can lead to a scarcely accurate evaluation of the postcritical behaviour because it does 
not take into account the elastic unloading arising after buckling. On the other hand, in many 
circumstances it has been observed that in the close vicinity of the buckling point the struc-
tural response is essentially governed by the tangent modulus of material and this corresponds 
to the absence of elastic unloading during buckling. Moreover, the hypothesis of full loading 
during buckling has many times proved to supply more realistic evaluation of collapse loads, 
both for beams (e.g. the Shanley’s column) and for bidimensional structures, such as plates 
and shells. In addition, the *DEFORMATION PLASTICITY option is based on the pluriaxial 
formulation of the classical Ramberg-Osgood law, and this makes it particularly suitable for 
carrying out a parametric analysis on aluminium alloys shells. 

 
 f0.2 (N/mm2) nR.O. 

Strong hardening alloys 100 10 
200 20 Weak hardening alloys 

(Heat-treated alloys) 300 30 
 

Table 1: Aluminium alloys considered in the analysis 
 
3.2. Modelling of structural imperfection 
The definition of structural imperfection is one of the basic concerns of the research on shell 
stability. For very thin shells initial imperfections can be evaluated by means of direct meas-
urement on full scale specimens and then interpreted by means of a multiple Fourier series. 
The analysis of the imperfect structure can be subsequently performed through F.E.M. non 
linear calculation. Nevertheless, this procedure, followed by many researchers for investigat-
ing the stability of thin shells, requires a thorough imperfection measurement, which is usually 
rather expensive. Furthermore, it provides an effective description of initial imperfection for a 
given manufacturing class of shell only, characterized by a well defined imperfection distribu-
tion. For this reason the results of stability analysis are valid for that class of shell only, and 
can not be generalized. In the present analysis a different approach has been followed, assum-
ing the following imperfection model: 
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This model is suitable for interpreting the imperfection affecting the relatively thick shells, 
being these imperfections generally smoother as compared to those potentially present in thin 
shells. By assigning suitable values to k1x, k1y, k2x, k2y, x0 e y0, Equation (1) is able to describe 
imperfection distributions similar to both axisymmetric and asymmetric critical and postcriti-
cal modes, as well as any combination of them. As a rule, initial imperfection distributions 
similar to the critical modes have been assumed in the analysis. This corresponds to give the 
parameters k2x and k2y a value corresponding to the number of longitudinal (m) and circumfer-
ential (n) waves, respectively. In this way the most severe condition for the buckling response 



has been investigated, so that a lower bound of the ultimate load carrying capacity has been 
determined as a function of the magnitude of the initial imperfection. Moreover, in spite of the 
purely theoretical meaning of the assumed imperfection pattern, the obtained results have 
shown to be sufficiently general to put into evidence the interaction between plasticity and 
imperfection effects. Figure 2 shows some of the initial imperfect configurations considered in 
the analysis, obtained by assuming the parameters corresponding to either elastic or plastic 
critical mode, including random combinations of them.  

In order to assume imperfection patterns distributed according to shell critical modes, the 
critical bifurcation modes and relevant critical loads have been evaluated both for elastic and 
plastic instability. Effects of plasticity on the buckling load have been taken into account by 
means of a suitable plasticity reduction factor η, obtained from literature. A synopsis view of 
bifurcation load, critical modes and plasticity factor is given in Table 2. 
 

 

n = 13,  m = 8 (asymmetric) 

 

n = 7,  m = 15 (asymmetric) 

 

n = 6,  m = 1 (asymmetric) 

 

n = 10,  m = 3 (asymmetric) 

 

m = 5 (axisymmetric) 

 

m = 16 (axisymmetric) 

 
Combined modes 

 (asymmetric) 

 

Random modes  

Figure 2: Some of imperfection distributions considered in the analysis 

 
In case of axially loaded cylinders which buckle in purely elastic range, the equation (see 

Table 2): 
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shows that many critical modes are possible for the same value of the buckling load. These 
modes can be individuated by calculating the minimum value of the bifurcation load for cou-
ples of integer values of m and n. In order to make the selection of m and n easier, Equation 
(2) can be plotted in the m,n plane where, by means of an appropriate choice of axis scale, it 
represents the equation of a circle ("Koiter” circle). In case of plastic buckling, the critical axi-
symmetric mode derived by a bifurcation analysis has been considered. 

The minimum critical load in the plastic range for the perfect shell can be expressed in the 
general form: 

                                 elcrpcr ,, ησσ =                                (3) 



where η is a reduction factor introduced to take into account the plasticity effect. Values ob-
tained by Gerard [5] have been indicated in Table 2, evaluated under the assumption of in-
compressible material in the plastic range and following the plastic deformation approach. 
 
3.3. Discussion of results 
The F.E.M. imperfection sensitivity analysis has emphasised the strong influence of the initial  
imperfection pattern on the ultimate load Pu, when directed according to the critical modes [8]. 
For the sake of comparison, the theoretical elastoplastic critical load Pcr,th = 2πRtσcr,p has been 
also evaluated, calculating Et and Es according to Ramberg-Osgood law. In general, for w0/t = 0, 
bifurcation loads evaluated by means of the Gerard’s η coefficient are in good agreement with 
F.E.M. prediction, especially in case of clamped ends. Figure 3 shows some cases of imperfec-
tion sensitivity for imperfection directed according the asymmetric elastic “chessboard” mode 
(Imperfection 1, 2, 3 and 4), which resulted to be more dangerous compared to axisymmetric 
imperfection modes. Limits corresponding to EC3 quality classes A, B and C are also plotted. 
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Table 2: Critical load, plasticity reduction factor and wave number at both elastic and plastic buckling for axially 
loaded cylinders 
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Figure 3: Typical imperfection sensitivity curves for some of cases allowed for (asymmetric imperfection) 
 
The influence of the boundary conditions deeply depends on the imperfection type and, as a 

consequence, on the buckling character. In particular, it is rather significant when the buckling 
is axisymmetric, whereas tends to disappear for asymmetric buckling (Figure 3). This can be 
easily explained by observing that in the axysimmetric instability the annular folds are placed 



close to the restrained ends and, for this reason, the buckling strength is strongly affected by 
the boundary conditions. On the contrary, in the asymmetric instability the buckling of shell 
surface starts as a rule at cylinder midlength and is scarcely influenced by the end restraints. 
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Figure 4: Typical load-displacement curves for cylinders failing in plastic range: asymmetric imperfection (left), 
axisymmetric imperfection (right) 

 
As far as the asymmetric imperfection is concerned, it can be observed that the typical 

snap-through behaviour of perfectly elastic shell tends to disappear when the plasticity effects 
are taken into consideration, at least for small imperfection magnitudes (Figure 4, left). In all 
the examined cases, the transition from the asymmetric to axisymmetric buckling corresponds 
to a critical value of imperfection w0*/t. Around this imperfection value, both types of buck-
ling can occur simultaneously. It is also possible to observe a great difference in postcritical 
behaviour when going from the axisymmetric to asymmetric diamond shaped buckling, being 
the former rather progressive and imperfection insensitive, whereas the latter involves a sharp 
drop in load carrying capacity after buckling.  

When considering axisymmetric imperfection, buckling is always symmetric with the ulti-
mate load decreasing with the imperfection magnitude. The drop in load postcritical capacity 
is as much noticeable as long as the imperfection level decreases. As in the case of asymmet-
ric imperfection, the residual structural strength tends to uniform in the fully developed post-
critical range, regardless of the initial imperfection magnitude (Figure 4, right). 

In the case of imperfections different from those corresponding to the critical modes, the 
buckling behaviour is rather different. In general, imperfection sensitivity for concentrated or 
linear defects is remarkably lower than for imperfection distributions similar to critical modes. 
Also, the influence of the boundary conditions tends to disappear when the buckling deflection 
is predominantly developed in the intermediate region of shell surface. For more details see [8]. 

Eventually, a great scatter of results can be observed, which confirms the commonly ac-
knowledged experimental performance of axially loaded cylinders (Figure 3). Such scatter in-
creases as long as R/t ratio and elastic limit f0.2 increase. The lower bound of numerical data 
corresponds, with good approximation, to imperfection distributions directed according to 
critical modes taken from the Koiter circle. Figure 3 shows some of such imperfection sensi-
tivity curves, together with a conservative evaluation of the limit imperfection w0*/t. It is im-
portant to underline that, below the limit imperfection value w0* the buckling is always axi-
symmetric, regardless of the actual imperfection distribution. This is a peculiar feature of axi-
ally loaded cylinders failing in plastic range, which can be exploited for the set-up of a check 
criterion, as shown in the next paragraph. In particular, it is possible to allow for the fact that 
the shell exhibits a comparatively small imperfection sensitivity when w0 < w0*. On the other 
hand, a significant influence of the end restraint conditions is observed, which has to be taken 



into due account. Based on the results of F.E.M. simulation, a simplified expression for w0*/t, 
valid as long as R/t ≤ a/b, can be put in the form (Figure 5): 

*
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where coefficients a and b depend on end restraint conditions of the shell.  
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Figure 5: Values of the limit imperfection w0*/t 
 

4. PROPOSAL FOR CODIFICATION 
 
Due to the peculiar aspect of plastic buckling, a special procedure for checking axially 

loaded cylinders against buckling is developed herein. The proposed method applies to the 
cases when some inelastic deformations are attained before buckling, as happens as a rule in 
relatively thick cylinders made of hardening materials. In addition, for the procedure to be ap-
plied, the imperfection level should not exceed the limit value w0*/t given in the previous 
paragraph. If the existing criterion given in the prEN1993-1-6 for steel shells is assumed, this 
leads to the definition of a supplementary quality class, placed above the upper class defined 
in EC3, namely the quality class A. Quality classes in EC3 are defined according to fabrica-
tion tolerance parameters like the cylinder out-of-roundness parameter Ur, the accidental ec-
centricity parameter Ue and the so-called dimple tolerance parameter U0,max, which is directly 
related to the surface geometrical imperfection w0 by means of the position w0/lgx = U0,max, 
where lgx = 4(Rt)0.5 is the gauge length assumed in the code for measuring geometrical imper-
fection. From the previous position it is possible to relate the nondimensional imperfection 
w0/t to U0,max in the following way: 

0,max0
0,max4gxUw R

U
t t t

≤ =
l

     (5) 

Depending on the values reached by the above parameters, it is possible to locate a given 
cylinder in one of the three quality classes A, B, or C allowed for in the code. For each quality 
class a quality parameter Q is given in EC3, to be used in the calculation of the imperfection 
reduction factor αx. Limit values of U0,max as provided in EC3 are given in Table 3, where the 
expressions relevant to the proposed A-plus Class are also shown. Such relationships are de-
rived directly by Equation (4) considering both the position lgx = 4(Rt)0.5 and Equation (5). 
The corresponding values of the quality parameter Q are given in Table 4, together with the 
formula for the calculation of the imperfection reduction factor αx, in which λx = (f0.2/σcr,e)0.5  
and λx,0 = 0.1 or 0.2 depending on the alloy. This formula is slightly different compared to the 
one supplied in EC3, in order to better fit buckling curves in plastic range [11]. 



Fabrication tolerance 
quality class Description Value of U0,.max  (f0.2 in N/mm2) 

  Clamped ends Hinged ends 

Class A-plus Excellent 
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1
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Class A Very high 0,006 
Class B High 0,01 
Class C Normal 0,016 

Table 3: Formulas of the dimple tolerance parameter U0,max  for the proposed A-plus Class together with values 
given in EN1993-1-6 for quality classes A, B and C 

Q Fabrication tolerance 
quality class Description Clamped 
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Class A-plus Excellent 60 50 
Class A Very high 40 
Class B High 25 
Class C Normal 16 

( )
1.44

,0
0,2

1

1 0.6
1 2.60

x

x x
E

Q f

α

λ λ

=
 

+ −  
 

 

Table 4: Values of the quality factor Q and imperfection reduction factor αx for the quality classes allowed for in 
the new proposal 

Values of U0,max in Table 3 for A-plus Class correspond to cylinders which always buckle in 
plastic range, that is with a axisymmetric pattern. Of course, both the out-of-roundness Ur and 
the accidental eccentricity parameter Ue should be properly modified in order to fit the quality 
Class A-plus. In order to predetermine whether a given Class A-plus cylinder will buckle in 
plastic range or not, it may be conventionally assumed that must result η ≤ 0.95 [14]. For a given 
alloy, represented by assigned values of f0.2 and nR.O., from Equation (3) it is possible to calculate 
the corresponding R/t value to be assumed as the limit for which η ≤ 0.95. This can be easily 
done by assuming the Ramberg-Osgood‘s law ( ) . .

0.20.002 R On
E fε σ σ= + as material model. 

The factor αx given in Table 4 can be taken as imperfection reduction factor, assuming Q = 50 or 
60 depending on whether the cylinder ends are hinged or clamped, respectively. The correspond-
ing R/t limit values are given in Table 5 as a function of f0.2. The squash limit slenderness λx,0 
has been taken equal to 0.1 for strong hardening alloys (f0.2 ≤ 150 N/mm2) and to 0.2 for weak 
hardening alloys (f0.2 ≥ 200 N/mm2), according to the distinction introduced into EC9. For R/t 
values above those of Table 5, buckling is supposed to be purely elastic and, hence, the shell 
cannot belong to the Class A-plus. Conversely, for R/t values below those of Table 5, buckling 
may be plastic provided the imperfection level complies with the Class A-plus limits given in 
Table 3. Otherwise, the cylinder has to be classified as Class A, B or C and checked accordingly. 

Suitable buckling curves for Class A-plus cylinders can be plotted according to the pro-
posal presented in [11], based on the format already adopted for the buckling of aluminium 
members in compression and codified into prEN1999-1-1. Adopting the codified Eurocode 
symbols, the characteristic buckling strength σxRk is obtained by multiplying the characteristic 
limiting strength f0.2 by a suitable buckling reduction factor χ, expressed as a function of the 
relative slenderness of the shell λx by means of the relationship χ = αxχperf, in which αx is the 
imperfection reduction parameter, given in Table 4, and χperf is the buckling factor for a per-
fect shell, given by: 

( )2 21perf xχ = φ + φ − λ          with      ( ) 2
0, ,00.5 1 x x x x φ = + α λ − λ + λ                (6) 



The parameter α0,x depends on the alloy and λx,0 is the squash limit relative slenderness. 
Values of α0,x and λx,0 are given in Table 6 for relevant types of alloy. Proposed buckling 
curves for Class A-plus cylinders are shown in Figure 6 against the 5% lower bound of F.E.M. 
results [11]. For the sake of comparison, EC3 Class A curves are also plotted, together with 
some of the experimental results presented in Mandara & Mazzolani [15], referring to stocky 
extruded aluminium cylinders with a very low imperfection degree loaded in compression. 

 
Hinged ends (Q = 50) 

f0.2 (N/mm2) 100 150 200 250 300 350 
σu = αησcr,e (N/mm2) 57.6 105.4 154.4 203.8 253.4 303.1 

α 0.611 0.697 0.788 0.825 0.852 0.873 
R/t 250 (*) 250 (*) 209 166 138 118 

 
Clamped ends (Q = 60) 

f0.2 (N/mm2) 100 150 200 250 300 350 
σu = αησcr,e (N/mm2) 57.6 105.4 154.4 203.8 253.4 303.1 

α 0.658 0.740 0.822 0.855 0.879 0.896 
R/t 225 (*) 225 (*) 218 172 142 121 

(*) Values of R/t complying with Equation (4) (R/t ≤ a/b). 

Table 5: Limit values of the R/t ratio corresponding to a plasticity factor η = 0.95 
 

Alloy λx,0 α0,x 
Weak hardening alloys 0.2 0.35 
Strong hardening alloys 0.1 0.2 

Table 6: Values of λx,0 and α0,x for the proposed buckling curves 
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Figure 6: Proposed buckling curves for quality Class A-plus 



5. CONCLUSIVE REMARKS 
 

An attempt to refine the EC3 approach to the buckling of axially loaded cylinders has been 
presented in this paper, in order to take into account the peculiar features of plastic buckling, 
exploiting in the meantime some benefits involved by its comparatively lower imperfection 
sensitivity compared to purely elastic buckling. Conditions required for the onset of plastic 
buckling have been determined by means of an extensive non linear F.E.M. analysis, which 
put into evidence the quite particular effect of imperfection observed in this case. Numerical 
results have then been analysed, aiming at defining a design approach to buckling allowing for 
the influence of precritical strains. Assuming the prEN1993-1-6 shell buckling formulation as 
a basic frame, a further shell quality class, placed above the EC3 Class A, and its relevant 
buckling curves have been introduced. As this new class mostly involves relatively thick cyl-
inders failing in plastic range, it could be of particular interest for aluminium shells because of 
their strain-hardening mechanical behaviour. Also, it would represent an important difference 
from the codification point of view between Eurocode 9 and Eurocode 3. 
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