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ABSTRACT 
 
An imperfection sensitive design criterion for aluminium alloy cylinders subjected to axial load, 
external pressure and torsion is presented in this paper. Buckling curves have been fitted against a 
comprehensive non linear F.E.M. analysis of cylinder imperfection sensitivity, considering a wide 
imperfection pattern and accounting for actual inelastic properties of material. Curves shown in this 
paper are intended to represent a codification proposal for the new Part 1-5 “Supplementary rules for 
shell structures” of Eurocode 9, which is presently under development within the activity of 
CEN/TC250-SC9 Committee (chairman F.M. Mazzolani), devoted to the preparation of Eurocode 9 
“Design of Aluminium Structures”. As this part of EC9 is the very first codification issue at European 
level dealing with aluminium shell structures, it is hoped that proposed curves could represent a 
helpful starting point for the general framing of buckling problems. 
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INTRODUCTION 
 
The new Part 1-5 “Supplementary rules for shell structures” of Eurocode 9 “Design of Aluminium 
Structures”, developed within the activity of CEN/TC250-SC9 Committee (chairman F.M. 
Mazzolani), is now progressing towards its final stage. This part of EC9 signs an unprecedented 
milestone in the codification on shell structures, as it is the very first issue at European level dealing 
with aluminium shells and, therefore, is the first to address specifically the peculiar aspects of such 
materials when used for shell structures. One of the most relevant problems faced in the preparation of 
this document has been the set up of buckling curves. Typical features of aluminium in terms of 
inelastic behaviour, in fact, result in the buckling response and, hence, in the shell imperfection 



sensitivity to be far different from mild steel. As a consequence, buckling curves usually adopted for 
steel, can not be used as they are, but require proper modifications in order to be adapted to aluminium 
shells. The extent of such modifications has been evaluated by means of a suitable F.E.M. simulation 
analysis, described in more detail in Mazzolani & Mandara, 2003, Mazzolani et al. (2003, 2004) and 
briefly summarised herein. In such analysis, the main aspects of cylinder imperfection sensitivity have 
been underlined, with particular emphasis to the effect of material plasticity on buckling. The 
simulation results have then been matched with EC3 curves, namely the ones given in the European 
Prestandards ENV1993-1-6 “Shell structures” (Rotter, 1998, Schmidt, 2000), clearly showing that 
they are not suitable to aluminium shells. For this reason a new set of curves is proposed in this paper, 
conceived in such a way to closely follow the basic formulation of stability problems as dealt with in 
EC9. The typical issues of EC9, and mainly those concerning the classification of alloys, have been 
addressed in this proposal. Cases under consideration are the same covered in ENV1993-1-6, namely 
circular cylinders under axial load, external pressure and torsion/shear. Also, for the sake of 
homogeneity, the basic layout of ENV1993-1-6, and in particular the concept of quality classes, have 
been kept.  
 
 
SINOPSYS OF F.E.M. RESULTS 
 
Because of the peculiar mechanical behaviour of aluminium alloys, the main concern of the F.E.M. 
analysis was the imperfection sensitivity of cylinders buckling in inelastic range. In this case an 
interaction between structural imperfections and plasticity effect can occur, with a strong influence on 
the buckling modes and postcritical behaviour. Also the deflected shape at buckling may be 
completely different in case of plastic buckling, and this is particularly evident in case of axially 
loaded cylinders. 
In order to cover cylinders failing by elasto-plastic buckling, both radius to thickness R/t and length to 
radius L/R ratios have been given values ranging between 25 ÷ 200 and 1 ÷ 4, respectively (Mazzolani 
& Mandara, 2003, Mazzolani et al., 2003, 2004). Three types of alloys, chosen according to the 
distinction between Hardening alloys and Heat-treated alloys, have been considered in the analysis 
(Table 1). The three of them have been taken into account for cylinders under axial load, whereas for 
cylinders under external pressure and torsion the first two have been allowed for, only. The exponent 
nR.O. of the Ramberg-Osgood law has been evaluated according to the Steinhardt proposal, i.e. by 
assuming nR.O. = f0.2/10, with f0.2 expressed in N/mm2 (Mazzolani, 1995). A static analysis of the 
unstable structural behaviour has been performed via F.E.M. simulation, by means of  the ABAQUS 
non-linear code. This allowed to determine both the limit load and the postcritical response of the 
imperfect structure as a function of the initial imperfection distribution. The ABAQUS F.E.M. 
analysis has been carried out using four-node reduced integration S4R5 shell elements, the *RIKS 
solution algorithm and the *DEFORMATION PLASTICITY option for material law (Mandara & 
Mazzolani, 1993). 
 

TABLE 1 
MECHANICAL FEATURES OF ALLOYS UNDER CONSIDERATION 

 
 f0.2 [MPa] nR.O. 

Strong hardening alloys 100 10 
200 20 Weak hardening alloys 

(Heat-treated alloys) 300 30 
 
Structural imperfections have been represented by means of the following model: 
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By assigning suitable values to k1x, k1y, k2x, k2y, x0 e y0, Equation (1) is able to describe an imperfection 
distribution similar to both axisymmetric and asymmetric critical and postcritical modes. The analysis 
has been carried out assuming an initial imperfection distribution similar to single or multiple critical 
modes, which corresponds to give the parameters k2x and k2y a value corresponding to the number of 
longitudinal (m) and circumferential (n) waves at buckling, respectively. In this way the most severe 
condition for the buckling response has been investigated, so as to determine a lower bound of the 
ultimate load carrying capacity as a function of the initial imperfection magnitude. Other types of 
imperfection (say a concentrated dimple placed at cylinder midlength or a continuous longitudinal 
groove) have been also considered for axially loaded cylinders only. Examples of imperfection 
distributions according to Equation (1) are illustrated in Figure 1. In order to widen the field of 
investigated imperfection patterns, the following alternative expression has been also used (Arbocz & 
Hol, 1991): 
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where the coefficients Akl and Bkl depend on the constructional features of the shell. By using such an 
imperfection model it is possible to interpret the sharp gradients which are common in the 
imperfection pattern of very thin shells. In this analysis such imperfection model has been considered 
for axially loaded cylinders only, with coefficients Akl and Bkl assumed to have a random distribution. 
A more detailed description of the imperfection distributions assumed in the analysis is given in 
Mazzolani & Mandara, 2003. 
In order to assume imperfection patterns distributed according to shell critical modes, the critical 
bifurcation modes and corresponding critical loads have been preliminary evaluated for both elastic 
and plastic instability. Effects of plasticity on the buckling load have been taken into account by 
means of a plasticity reduction factor η. A complete frame of bifurcation loads, critical modes and 
plasticity factors is given in Mazzolani & Mandara (2003), Mazzolani et al. (2003, 2004) for all 
relevant load cases considered in the analysis. The minimum theoretical critical load Pcr,th in 
elastoplastic range is expressed in the general form: 

Pcr,th = ηPcr,el       (3) 

where Pcr,el is the purely elastic bifurcation load and η is the reduction factor introduced to take into 
account the plasticity effect, depending on material tangent Et = dσ/dε and secant moduli Es = σ/ε. 
Values obtained by Gerard (1962) have been assumed for η, evaluated assuming incompressible 
material in the plastic range and following the plastic deformation approach.  
 

      
Figure 1: Imperfection distributions according to Equation (1) (n = 7, m = 15), (m = 16), (n = 4) 

 
The F.E.M. analysis has emphasised the strong influence of the initial imperfection pattern, in 
particular when directed according to the critical modes. Typical imperfection sensitivity curves are 
plotted in Figure 2, showing the great reduction of the collapse load Pu with the imperfection 
magnitude w0, compared with the theoretical elastoplastic critical load Pcr,th. Limits corresponding to 



quality classes A, B and C, as defined in ENV1993-1-6, are also drawn. In general, elasto-plastic 
bifurcation loads according to Gerard’s η coefficients are in good agreement with F.E.M. prediction. 
As a rule, values provided by simulation for w0 = 0 fall on the conservative side with a slight 
discrepancy, decreasing as long as both the R/t ratio and the elastic limit strength f0.2 decrease. In 
general, it can be confirmed that the effect of initial imperfection increases as long R/t and L/R ratios, 
as well as the elastic limit strength f0.2 increase, while in the same conditions the effect of plasticity is 
relatively smaller. Some buckling deflected shapes are shown in Figure 3. Both theoretical predictions 
and experimental evidences on the buckling pattern are fully confirmed by the F.E.M. analysis for all 
load cases taken into consideration. 
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Imperfection Sensitivity Curves

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

W0/t

Pu /Pcr,th

L = 1000 mm  R = 1000 mm  t = 10 mm
R/t = 100      L/R=1       f02 = 100 N/mm2 

 n = 9, Pcr,th = 0.620 N/mm2

 n = 8, Pcr,th = 0.610 N/mm2

n=8

CLASS A CLASS CCLASS B

 n = 9

Figure 2 : Typical imperfection sensitivity curves for cylinders (axial load and external pressure) 
 

  

  
Figure 3 : Characteristic buckling deflected shapes: a) axial load, elastic buckling; b) axial load, 

plastic buckling; c) uniform external pressure; d) torsion/shear 
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SEMI-PROBABILISTIC APPROACH TO NUMERICAL DATA 
 
Because of the great scattering observed in numerical buckling data, a further semi-probabilistic 
analysis has been carried out in order to define a reliable lower bound of buckling curves to be 
proposed for codification. To this purpose, the whole of numerical data referring to axially loaded 
cylinders has been treated in stochastic way, that is by assuming the obtained results to be interpreted 
by a specific probabilistic distribution. Such assumption allows the extrapolation of lower values of 
ultimate load, corresponding to a given fractile value (e.g. 5%). In this way, a characteristic lower 
bound can be defined for fitting buckling curves. The Weibull distribution has been used to this aim, 
whose cumulative curve is described by the equation: 

                                            ( )βα−−= xexP 1)(                                                   (4) 

where α and β are characteristic parameters to be fitted on the basis of available data. From Equation 
(4) the probability density curve can be obtained: 
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The Weibull extreme distribution has been already used for the stochastic evaluation of the buckling 
load of imperfect cylinders (Mendera, 1989), and is well suited to the description of random variables 
ranging between 0 and 1. Parameters α e β have been estimated on the basis of numerical data divided 
according to shell quality classes as defined in ENV1993-1-6. A complete frame of α and β values is 
given in Mazzolani & Mandara (2003), as a function of material, R/t ratio and quality class. Some of 
obtained cumulative curves, in which the stochastic variable x has to be assumed as the cylinder 
buckling load, are shown in Figure 4, together with the corresponding Weibull cumulative curves and 
characteristic 5% lower bound. 
 
 
PROPOSAL FOR BUCKLING CURVES 
 
A preliminary comparison of simulation results with provisions given in ENV1993-1-6 showed that 
buckling curves used for steel shells cannot be applied to aluminium shells, because of the strongly 
different behaviour in the transition region between elastic and plastic range (Mazzolani et. al., 2003). 
A first attempt to adapt the EC3 approach was proposed  by Mazzolani & Mandara (2003), by 
modifying the λ0, β and η parameters provided in the piecewise formulation of buckling factor χ given 
in ENV1993-1-6, that is: 

χ = 1, for λ < λ0; χ = 1 - β 
η
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Nevertheless, this seemed to lead to an unjustified excess of conservativeness and, most of all, to a 
lack of accuracy in the interpretation of buckling data in the elastic-plastic region. Also, this approach 
would involve the commonly recognised difference between strong and weak hardening alloys to be 
completely missing. In order to overcome such limits, an alternative formulation for aluminium shell 
buckling curves has been presented. It is concerned with the fundamental load cases of axial 
(meridional) load, external pressure (circumferential compression) and shear (torsion), also considered 
in the ENV1993-1-6. The proposal is based on the format already adopted for the buckling of 
aluminium members in compression and codified into EN1999-1-1. Proper account is made for 
imperfection reduction factors, which are kept equal to those provided into ENV1993-1-6, except for 
the case of axial compression. The characteristic buckling strengths are obtained by multiplying the 
characteristic limiting strength f0.2 by suitable buckling reduction factors χ, given by: 



Cylinders under axial load
Weak hardening alloys 

- R/t = 100-

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

x

P(x)

Class A
Class B
Class C
Weibull Curve A
Weibull Curve B
Weibull Curve C
5% Percentile Value

  A

  B

  C

    f02 =  200 N/mm2

 

Cylinders under axial load
Weak hardening alloys 

- R/t = 200-

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

x

P(x)

Class A
Class B
Class C
Weibull Curve A
Weibull Curve B
Weibull Curve C
5% Percentile Value

  A

  B

  C

    f02 =  200 N/mm2

Figure 4 : Semi-probabilistic exploitation of simulation data according to Weibull extreme law 
TABLE 2 

VALUES OF  α0 AND λ0 AND  FOR RELEVANT LOAD CASES AND ALLOY TYPES 

Alloy Axial (meridional) 
load External pressure  Shear (torsion) 

 λ0 α0 λ0 α0 λ0 α0 
Weak hardening alloys 0.2 0.35 0.3 0.55 0.5 0.3 
Strong hardening alloys 0.1 0.2 0.2 0.7 0.4 0.4 

TABLE 3 
FABRICATION TOLERANCE QUALITY CLASSES AND EXPRESSIONS OF THE IMPERFECTION REDUCTION 

FACTOR 

Fabrication tolerance 
quality class Description Axial (meridional) load External pressure (αθ) 

and shear (torsion) (ατ) 
  Q αx αθ or ατ 

Class A Excellent 40 0,75 
Class B High 25 0,65 
Class C Normal 16 
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σxRk = χx  f0,k ,    σθRk = χθ  f0,k ,    τxθRk = χt  f0,k  / 3                                   (7) 

where χx  χθ and χt refer to axial (meridional) load, external pressure (circumferential compression) 
and shear (torsion), respectively. The buckling reduction factors χx, χθ and χt  are expressed as a 
function of the relative slenderness of the shell λ by means of the relationship: 

χ = αχperf       (8) 

in which α is the imperfection reduction parameter, depending on both the load case and shell 
slenderness, and χperf is the buckling factor for a perfect shell, given by: 

( )221 λ−φ+φ=χ perf          with      ( )[ ]2
0015.0 λ+λ−λα+=φ                            (9) 

The parameter α0 depends on the alloy and λ0 is the squash limit relative slenderness. The relative 
shell slenderness parameters for the three stress components under consideration are given by:  

λx = (f0,k/σxRc)1/2,   λθ = (f0,k/σθRc)1/2   ,  λτ = ((f0,k/ 3 )/τRc)1/2   (10) 

Values of α0 and λ0 are given in Table 2 for relevant load cases and types of alloy. Equations (8) and 
(9) are formally identical to those set out in EN1999-1-1 for aluminium members in compression, 
apart for the value of the shell imperfection reduction factor α, which is given separately for the load 
cases of axial (meridional) load (αx), external pressure (circumferential compression) (αθ) and shear 



(torsion) (ατ). In particular, for both external pressure (circumferential compression) and shear 
(torsion) the same imperfection reduction factors αθ and ατ given in ENV1993-1-6 have been kept. A 
slightly different expression of the imperfection reduction factor αx has been adopted in the case of 
axially loaded cylinders, only. This was due to the different imperfection sensitivity exhibited by 
aluminium cylinders when they buckle in plastic range. Also, the same distinction in quality classes as 
in ENV1993-1-6 has been kept, which results in keeping the same values of both imperfection limits 
and quality parameter Q in case of axially loaded cylinders. Summarising, the expressions of α are 
given in Table 3. Some of the corresponding buckling curves are shown in Figure 5, compared with 
simulation data. The 5% Weibull lower bound has been considered for fitting the curves of axially 
loaded cylinders.  
Note that, contrary to the rule given in ENV1993-1-6, where the same buckling curve and 
imperfection reduction factors are adopted for external pressure and shear (torsion), different values of 
λ0 and α0 have been adopted in this proposal, in order to have a better fitting of F.E.M. results (see 
Table 2). This was a consequence of higher buckling factors resulting from numerical analysis for 
cylinders in shear. 
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Cylinders under axial load
Strong hardening alloys

Quality Class C

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.50 1.00 1.50 2.00

λ

χ
Minimum Value
Medium Value
Maximum Value
5% Percentile Value

 

Cylinders under axial load
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Cylinders under axial load
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Cylinders under external pressure
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Cylinders under torsion
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Figure 5 : Comparison of proposed buckling curves with F.E.M. simulation results 

CONCLUSIVE REMARKS 
 
The study presented in this paper summarises a proposal for aluminium shell buckling curves 
discussed within the activity of CEN/TC250-SC9 PT Committee, aimed at issuing the new part Part 1-
5 “Supplementary rules for shell structures” of EC9. Curves have been fitted against the results of a 
wide parametric F.E.M. carried out by means of the non linear code ABAQUS. Load cases referring to 
axial load, external pressure and torsion (shear) have been addressed, that is the same considered in 
ENV1993-1-6, dealing with steel shells. The analysis led to a thorough understanding of shell 
stability, with special emphasis to the case when relevant inelastic deformations occur before 
buckling. In particular, the interaction between the effect of geometrical imperfections and that of 
material inelastic behaviour has been underlined.  
As EC3 buckling curves have been found inadequate to aluminium shells, the new set of buckling 
curves discussed herein has been proposed, assuming the basic formulation already implemented in 
EN1999-1-1 for aluminium members in compression. The obtained curves exhibit a much better 
fitting of numerical results, with a closer interpretation of results falling in the intermediate 
slenderness range. They also clearly highlight the difference between weak and strong hardening 
alloys. For such reasons, the developed curves can be proposed with good conscience for the 
implementation into EN1999-1-5.  
At the issuing date of this paper, October 2003, the proposal is under examination within PT1 of 
CEN/TC250-SC9. In order to achieve a satisfying degree of homogeneity between formulations for 
steel and aluminum, a feedback of such discussion is also forwarded to PT1-6 of CEN/TC250-SC3, 
devoted to the development of Part 1-6 “Supplementary rules for shell structures” of EC3. 
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