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ABSTRACT 
This paper represents a first basis for the evaluation of imperfection sensitivity of aluminium cylin-
ders subjected to axial load, uniform external pressure and torsion, aimed at defining a specific de-
sign criterion similar to the procedure set out in the European Prestandards ENV1993-1-6 “Shell 
structures”. To this purpose, a comprehensive non linear F.E.M. analysis has been carried out, con-
sidering a wide imperfection pattern and accounting for actual inelastic properties of material. Re-
sults show the necessity to define specific buckling curves for aluminium alloy shells, in order to ac-
count for peculiar features of such materials. The work, developed within the activity of CEN/TC250 
SC9 Committee, devoted to the preparation of Eurocode 9 “Design of Aluminium Structures”, is in-
tended to be a background for the new Part 1-5 “Supplementary rules for shell structures” of Euro-
code 9, which is presently under development. 
 

SOMMARIO 
Questa memoria costituisce una prima base per la valutazione della sensibilità alle imperfezioni di 
cilindri in alluminio soggetti a carico assiale, pressione esterna e torsione, finalizzata alla proposta ed 
alla messa a punto di un criterio di verifica simile a quello implementato nell’Eurocodice 3 
(ENV1993-1-6 “Shell structures”). A tal scopo è stata condotta una vasta analisi F.E.M. non lineare, 
in cui è stato considerato sia l’effetto delle imperfezioni che quello del comportamento inelastico del 
materiale. I risultati evidenziano la necessità di curve di instabilità ad hoc per i gusci in leghe di al-
luminio, onde considerare gli aspetti peculiari del comportamento di tali materiali. Il lavoro, svilup-
pato nell’ambito dell’attività della Commissione CEN/TC250 SC9 dedicata alla preparazione 
dell’Eurocodice 9 “Design of Aluminium Structures”, è di supporto alla stesura della nuova parte 
dell’EC9 “Supplementary rules for shell structures”, attualmente in fase di sviluppo. 



1. INTRODUCTION 
 
In spite of the great effort carried out in the field of codification in the recent years, the problem of 
buckling of shell structures is not yet definitively assessed, with particular regard to the effects of 
geometrical imperfection and material plasticity. In most cases, in fact, the effect of imperfection is 
evaluated through the traditional, empirical "Lower Bound Design Philosophy", according to which a 
knock-down factor of buckling loads, usually denoted by α, is roughly fitted as lower limit of the 
scattered experimental data. In spite of its excess of conservativeness, this approach is kept in most 
of codes dealing with shell structures. As far as the inelastic behaviour of material is concerned, its 
effect is only approximately considered in the codes, usually by means of an empirical regression 
curve, which is not able to account for the actual inelastic material features. Moreover, all codes are 
concerned with mild steel shells, whereas no allowance is made for round-house-type materials, such 
as stainless or high strength steels and aluminium alloys, whose behaviour is peculiarly hardening. 
Only in the last years, an attempt to relate the α factor to the actual imperfection magnitude has been 
made, leading to the latest issue of Eurocode 3 (ENV1993-1-6 “Supplementary rules for the shell 
structures”) (Rotter, 1998, Schimdt, 2000), dealing with steel shells, in which the actual shell imper-
fection level is accounted for by means of quality classes. This part of EC3, which is now undergoing 
the conversion into the EN stage, indeed represents a significant step ahead, even though its interpre-
tation of buckling in plastic range can not be extended to materials other than mild steel. 
Based on these considerations, the result of almost 6000 F.E.M. simulation runs on aluminium shells 
is reported in this paper, in order to delineate a preliminary numerical data-set for the definition of 
buckling curves for aluminium alloys shells, liable to be introduced into the new part of Eurocode 9, 
entitled EN1999-1-5 Supplementary rules for shell structures. For the sake of homogeneity, the basic 
layout of ENV1993-1-6, and in particular the concept of quality classes, is referred to as a basis for 
comparison. At the same time, some typical issues of EC9, and mainly those concerning the classifi-
cation of alloys, have been addressed. Cases under consideration are the same covered in ENV1993-
1-6, namely cylinders under axial load, external pressure and torsion/shear. For such shell-load com-
binations numerical simulations have been carried out by accounting for a wide geometrical imper-
fection spectrum, in order to consider the most dangerous distributions. The non linear F.E.M. code 
ABAQUS has been used, whose reliability has been checked in turn on the basis of experimental 
tests carried out by the authors (Mandara & Mazzolani, 1993, Mandara, 1993a,b). The analysis is 
mainly dealing with the case of inelastic buckling, as this aspect is of major concern in a comparison 
between steel and aluminium structures. The case of purely elastic buckling, namely that involving 
very thin cylinders, has been assumed to be not material-dependent and, for this reason, no specific 
imperfection sensitivity analysis has been performed. 
 
 
2. THE PARAMETRIC ANALYSIS 
 
2.1 General 
As it is well known, the most important aspect of the buckling behaviour of cylinders is their high 
imperfection sensitivity, due to the asymmetric stable-unstable response at bifurcation point. This 
usually involves a remarkable reduction of the actual buckling loads as compared to theoretical pre-
dictions, depending on both load case and imperfection magnitude. Most of the existing data confirm 
that the greatest reduction of buckling loads pertains to axially loaded thin cylinders (R/t > 300 ÷ 



500), whose instability predominantly occurs in elastic 
range. Nevertheless, imperfections play an important 
role also in load cases other than axial load, as well as 
in the case of thicker shells (R/t < 200), in which the 
interaction between imperfections and plasticity effect 
can occur, with a strong influence on the buckling 
modes and postcritical behaviour. When significant 
plastic deformations arise before buckling, in fact, 
both behaviour and deflected shape at buckling may be 
completely different, being affected by the plastic flow 
in material rather than by the geometrical non linear 
effect of surface imperfections. This effect is particu-
larly evident in case of axially loaded cylinders. 
 
2.2 Description of the analysis 
In order to cover cylinders characterised by elasto-
plastic buckling, the range of geometric properties 
shown in Table 1 has been considered. R/t and L/R va-
lues have been chosen in order to fall within the range 
of civil engineering applications. They also involve si-
gnificant plastic deformation before buckling. Three 
types of alloys have been considered in the analysis 
(Table 2). All of them have been taken into account 
for cylinders under axial load, whereas for cylinders 
under external pressure and torsion the first two have 
been allowed for, only. Alloys in Table 2 have been 
chosen according to the distinction between Hardening 
alloys and Heat-treated alloys, already considered in 

the European Recommendations on Aluminium Alloys of ECCS (1978), and also introduced in the 
EC9. The exponent nR.O. of the Ramberg-Osgood law has been evaluated according to the Steinhardt 
proposal, i.e. by assuming nR.O. = f0.2/10, with f0.2 expressed in N/mm2 (Mazzolani, 1995). A further 
group of alloys with higher mechanical features (f0.2 = 300N/mm2 and nR.O. = 30) has been consid-
ered in order to cover high strength alloys (such as the 6000 and 7000 alloy series). 
A static analysis of the unstable structural behaviour has been performed by means of F.E.M. simula-
tion. In this case the limit load of the imperfect structure is evaluated together with the postcritical 
response as a function of the initial imperfection. Such a kind of approach is suitable when no snap-
through or mode jumping is expected, as usually happens in the case of relatively thick cylinders 
which buckle in plastic range. In addition, a quasi-static procedure emphasises the buckling response 
regardless of testing procedures, by highlighting the postbuckling equilibrium paths. 
The ABAQUS F.E.M. analysis has been carried out using the *RIKS option for the solution algo-
rithm, the *DEFORMATION PLASTICITY option for material law and four-node, reduced integra-
tion S4R5 shell elements (Mandara, 1993a,b and Mandara & Mazzolani, 1993). The ABAQUS op-
tion *DEFORMATION PLASTICITY has been adopted, as it is slightly more conservative than the 
option *PLASTIC. Due to the fact that it does not take into account the elastic unloading arising after 
buckling, the *DEFORMATION PLASTICITY option provides a better interpretation of the struc-

 
R/t R [mm] t [mm] L [mm] L/R 
Cylinders under axial compression 

200 1000 5 2000 2 
100 1000 10 2000 2 
50 1000 20 2000 2 
25 1000 40 2000 2 

12.5 1000 80 2000 2 
Cylinders under external pressure 

200 1000 5 4000 4 
100 1000 10 4000 4 
50 1000 20 4000 4 

200 1000 5 2000 2 
100 1000 10 2000 2 
50 1000 20 2000 2 

200 1000 5 1000 1 
100 1000 10 1000 1 
50 1000 20 1000 1 

Cylinders under torsion 
200 1000 5 4000 4 
100 1000 10 4000 4 
50 1000 20 4000 4 

200 1000 5 2000 2 
100 1000 10 2000 2 
50 1000 20 2000 2 

Table 1 – Geometric data of analysed cylin-
ders  (R mean radius, t wall thickness,  

L overall length). 
 

 f0.2 [MPa] nR.O. 

Strong hardening alloys 100 10 
200 20 Weak hardening alloys 

(Heat-treated alloys) 300 30 

Table 2 – Mechanical features of alloys un-
der consideration. 



tural response at buckling, which is essentially governed by the tangent modulus of material. In addi-
tion, such option is based on a pluriaxial formulation of the classical Ramberg-Osgood law, and this 
is particularly suitable when dealing with aluminium alloys. 
 
2.3 Modelling of structural imperfection  
The definition of structural imperfection is one of the basic concerns of the research on shell stabil-
ity. The imperfection model assumed herein is: 
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Even though this model does not contain higher order terms, it can be profitably used for interpreting 
the imperfection affecting relatively thick shells, being these imperfections generally smoother as 
compared to those potentially present in thin shells. By assigning suitable values to k1x, k1y, k2x, k2y, 
x0 e y0, Equation (1) is able to describe an imperfection distribution similar to both axisymmetric and 
asymmetric critical and postcritical modes. As a rule, an initial imperfection distribution similar to 
single or multiple critical modes has been assumed in the analysis. This corresponds to give the pa-
rameters k2x and k2y a value corresponding to the number of longitudinal (m) and circumferential (n) 
waves at buckling, respectively. In this way the most severe condition for the buckling response has 
been investigated, so as to determine a lower bound of the ultimate load carrying capacity as a func-
tion of the initial imperfection magnitude. Other types of imperfection (say a concentrated dimple 
placed at cylinder midlength or a continuous longitudinal groove) have been also considered. Such 
imperfections, obtained by giving parameters k1x, k1y, k2x, k2y, x0 e y0 specific values, have been al-
lowed for in case of axially loaded cylinders only. Examples of imperfection distributions according 
to Equation (1) are illustrated in Figure 1. 
In order to widen the field of investigated imperfection patterns, the following alternative expression 
has been also used (Chryssanthopulos, Baker & Dowling 1991, Arbocz & Hol, 1991): 
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where the coefficients Akl and Bkl depend on the constructional features of the shell. By using such an 
imperfection model it is possible to interpret the sharp gradients which are common in the imperfec-
tion pattern of very thin shells. In this analysis such imperfection model has been considered for a-
xially loaded cylinders only, with coefficients Akl and Bkl assumed to have a random distribution. A 
detailed description of the imperfection distributions assumed in the analysis is given in Mazzolani & 
Mandara, 2003. 
In order to assume imperfection patterns distributed according to shell critical modes, for each of cyl-
inder geometric types referred to in Table 1, the critical bifurcation modes and corresponding critical 
loads have been evaluated for both elastic and plastic instability. Effects of plasticity on the buckling 
load have been taken into account by means of a suitable plasticity reduction factor η, obtained from 
literature (Gerard, 1962). A synopsis view of bifurcation loads, critical modes and plasticity factors is 
given in Table 3 for all relevant load cases considered in the analysis. 
In case of axially loaded cylinders failing in purely elastic range, the equation (see Table 3): 
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shows that many critical modes are possible for the same value of the buckling load. These modes 
can be individuated by calculating the minimum value of the bifurcation load for couples of integer 
values of m and n. Equation (3) can be plotted in the m,n plane where, by means of an appropriate 
choice of axis scale, it represents the equation of a circle ("Koiter circle").  
In case of plastic buckling, critical axisymmetric modes derived by a bifurcation analysis has been 
considered. The minimum critical load in plastic range is expressed in the general form: 

                                 elcrpcr ,, ησσ =                                (4) 

where η is a reduction factor introduced to take into account the plasticity effect. Values obtained by 
Gerard (1962) have been indicated in Table 3, evaluated under the assumption of incompressible 
material in the plastic range and following the plastic deformation approach. 
The values of both tangent dσ/dε and secant moduli σ/ε at the elastoplastic bifurcation stress can be 
calculated by means of the Ramberg-Osgood law  ( )nEE σσε 002.0+=  (Mazzolani, 1995). 
 

      
Figure 1 -  Imperfection distributions according to Equation (1) (n = 7, m = 15), (m = 16), (n = 4). 
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Table 3 – Synopsis of elastic and elasto-plastic buckling loads and corresponding critical modes for 
load cases under consideration. 



3. DISCUSSION OF RESULTS 
 
3.1 General 
The F.E.M. imperfection sensitivity analysis has emphasised the strong influence of the initial imper-
fection pattern, in particular when directed according to critical modes. Typical imperfection sensi-
tivity curves are plotted in Figure 2, showing the great reduction of the buckling load Pu with the im-
perfection magnitude w0, compared with the theoretical elastoplastic critical load Pcr,th. Limits corre-
sponding to quality classes A, B and C, as defined in ENV1993-1-6, are also drawn (see chapter 4). 
In general, elasto-plastic bifurcation loads according to Gerard’s η coefficients are in good agree-
ment with F.E.M. prediction. As a rule, values provided by simulation for w0 = 0 fall on the conser-
vative side with a slight discrepancy, decreasing as long as both the R/t ratio and the elastic limit 
strength f0.2 decrease. In general, it can be confirmed that the effect of initial imperfection increases 
as R/t and L/R ratios, as well as the elastic limit strength f0.2 increase, while in the same conditions 
the effect of plasticity is relatively smaller. Some buckling deflected shapes are shown in Figure 3. 

 
3.2 Cylinders under axial load 
F.E.M. analysis confirms that buckling may 
be either axisymmetric or asymmetric de-
pending on the initial imperfection distribu-
tion, as well as on the value of buckling 
stress. For an asymmetric imperfection the 
typical snap-through behaviour of perfectly 
elastic shell tends to disappear when plastic-
ity effects occur, at least for small imperfec-
tion magnitudes. Transition from asymmet-
ric (Figure 3a) to axisymmetric (Figure 3b) 
buckling corresponds to a critical value of 
imperfection w* (Mandara, 1993a,b, Man-
dara & Mazzolani, 1993). When considering 
an axisymmetric imperfection, buckling is 
always symmetric with the ultimate load de-
creasing with the imperfection magnitude. In 
case of imperfections different from those 
corresponding to critical modes, the buckling 
behaviour is rather different. In general, im-
perfection sensitivity for concentrated or lin-
ear defects is remarkably lower than for im-
perfection distributions similar to critical 
modes.  
The influence of boundary conditions deeply 
depends on the imperfection type and, as a 
consequence, on the buckling character. In 
particular, it is rather significant when the 
buckling is axisymmetric, due to the fact that 
buckles take place near the loaded ends. On 

Cylinders under axial load 
Imperfection Sensitivity Curves
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Cylinders under external pressure

Imperfection sensitivity curve
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Cylinders under torsion
Imperfection sensitivity curve
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Figure 2 -  Imperfection sensitivity curves for cylin-
ders under axial load, external pressure and torsion. 

a)

b)

c)



the contrary, the influence of boundary conditions drops down when the buckling deflection is pre-
dominantly developed in shell intermediate region. This happens in case of asymmetric instability 
and, in general, in all cases when buckling occurs without significant precritical plastic deformations. 
Eventually, a great scatter of results can be observed (Figure 2a), which confirms the commonly ac-
knowledged experimental performance of axially loaded cylinders. Such scatter increases as long as 
R/t ratio and elastic limit f0.2 increase. The lower bound of numerical data corresponds, with good 
approximation, to imperfection distributions directed according to a single or to a combination of 
critical modes obtained from Equation (3). 
 
3.3 Cylinders under external pressure 
Both theoretical and experimental predictions on the buckling pattern are fully confirmed by F.E.M. 
analysis. The buckled configuration always consists of one longitudinal halfwave and of a number of 
circumferential halfwaves increasing with the R/t ratio of the cylinder (Figure 3c). This buckling pat-
tern is kept in inelastic range, too. The imperfection sensitivity analysis has shown a lower influence 
of geometrical imperfections on the load bearing capacity compared with axially loaded cylinders 
(Figure 2b). This is confirmed also by a reduced scatter of results. In addition, a relatively small sen-
sitivity to localised defects has been detected. The effect of restraint conditions is significant for very 
short cylinders, only, and the theoretical prediction of the critical load is well caught in case of 
hinged ends. In conclusion, imperfection distributions directed according to the elastic critical mode 
give place, as a rule, to the lowest buckling response of the shell.  
 
3.4 Cylinders under torsion 
For this load case the same considerations made for cylinders under external pressure hold. The 
buckling shape is well interpreted by F.E.M. analysis, showing that most of deformation is concen-
trated in the central region of the cylinder (Figure 3d). As in the case of cylinders subjected to exter-
nal pressure, the influence of restraint condition is negligible in most cases, apart from the case of 
very short cylinders. F.E.M. results, however, best agree with theoretical prediction in case of hinged 
ends. Finally, the observed scattering of results is very reduced and, also, a slightly lower global im-
perfection sensitivity is observed (Figure 2c).  
 
 
4. CONSIDERATIONS ON THE USE OF EC3 PROVISIONS FOR ALUMINIUM SHELLS  
 
In this chapter a first assessment of the applicability of EC3 provisions to aluminium shells is given. 
According ENV1993-1-6, the characteristic buckling strengths are obtained from the characteristic 
yield strength by means of the relationships σxRk = χx  fy,k , σθRk = χθ  fy,k , τxθRk = χt  fy,k / 3 , for axial 
load, external pressure and torsion, respectively, in which the reduction factors χx, χθ and χt are 
given as a function of the relative slenderness of the shell λ from: 

χ = 1, for λ < λ0; χ = 1 - β 
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in which α is the elastic imperfection reduction factor, β is the plastic range factor, η is the interac-
tion exponent and  λ0 is the squash limit relative slenderness, all of them depending on the load case 
(Tables 4 and 5). The value of the plastic limit slenderness λp is given by λp = ( )β−α 1/ .  



  

  
Figure 3 – Buckling deflected shapes: a) axial load, elastic buckling; b) axial load, plastic buckling; 

c) uniform external pressure; d) torsion/shear. 
 

    

 Axial (meridional) load 
External pressure and torsion 

(shear) 
λ0 0.20 0.40 
β 0.60 0.60 
η 1.00 1.00 

Table 4 - Expressions of factors λ0, β and η according to ENV1993-1-6. 
 

Axial (meridional) load 
External pressure (αθ) and tor-

sion (shear) (ατ) 
Fabrication 
tolerance 

quality class 
Description 

Q αx αθ or ατ 
Class A Excellent 40 0,75 
Class B High 25 0,65 
Class C Normal 16 

( ) 44.191.11
62.0

twk
x ∆+

=α  

0,50 

 Table 5 - Fabrication tolerance quality classes and expressions of factor α according to 
ENV1993-1-6. 

 
The shell slenderness parameters for stress components corresponding to considered load cases are 
determined from λx = (fy,k/σxRc)1/2, λθ = (fy,k/σθRc)1/2, λτ = ((fy,k/ 3 )/τRc)1/2, respectively, where the 
critical buckling stresses σxRc, σθRc and τRc are obtained from the code according to the loading case. 

a) b)

d)c)



By observing Figures 4 to 6, it is clear that rules given in ENV1993-1-6 for steel shells cannot be ap-
plied to aluminium cylinders as they are, but need a deep transformation in order to take into account 
the peculiar aspects of aluminium alloys. This is evident when comparing χ - λ curves of ENV1993-
1-6 with the results of simulation analysis. Each quality class A, B and C, and both strong and weak 
hardening alloys are represented in the comparison. With the only exception of shells loaded in tor-
sion, matching code curves with numerical results clearly demonstrates that EC3 curves are unac-
ceptably unconservative, in particular in case of strongly hardening alloys in the slenderness range 
0.5 < λ < 2. This stands in particular for axially loaded cylinders. In order to try an adaptation of EC3 
curves, a modification of λ0, β and η parameters would be necessary, so as to fit numerical results 
with a better degree of approximation. Nevertheless different values of λ0, β and η, as shown in 
Mazzolani & Mandara (2003), would result in too much conservative values of the buckling factor χ 
for λ < 1. This would also cause the distinction between strongly and weakly hardening alloys to 
miss its meaning, and this is evidently contrary to what commonly accepted in both codification (in-
cluding Eurocode 9) and literature. This is the reason why a completely new formulation of buckling 
curves for aluminium shells is needed. 
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Cylinders under axial load
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Cylinders under axial load
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Figure 4 – Comparison of EC3 buckling curves with simulation data: axial load. 
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Figure 5 – Comparison of EC3 buckling curves with simulation data: external pressure. 

 
 
5.  CONCLUSIVE REMARKS 
 
The study presented in this paper has intended to start a discussion on the definition of buckling 
curves liable to be introduced into European codification on aluminium alloy structures. To this pur-
pose, a wide parametric F.E.M. analysis has been carried out by means of ABAQUS code. Load 
cases referring to axial load, external pressure and torsion (shear) have been addressed. Such cases 
are those considered in ENV1993-1-6, too, dealing with steel shells. In order to account for as many 
imperfection cases as possible, a global amount of almost 6000 runs have been carried out. This led 
to a thorough understanding of the problem, with particular regard to the case when relevant inelastic 
deformations occur before buckling. In particular, the interaction between the effect of geometrical 
imperfections and that of material inelastic behaviour has been emphasised.  
Results obtained from simulation analysis have been matched with provisions given in ENV1993-1-
6, showing that buckling curves used for steel shells are clearly unsuitable to aluminium shells, be-
cause of the strongly different behaviour in the transition region between elastic and plastic range. In 



short, buckling data for aluminium shells fall well below curves for steel, in particular in case of 
strong hardening alloys. This result was predominantly evident in case of axial load and external 
pressure for slenderness values around the plastic limit slenderness λp. 
Results of F.E.M. analysis and comparison with EC3 buckling curves clearly indicate that a set of 
provisions purposely conceived for aluminium alloy shells is necessary, in order to get adequate ac-
curacy in the prediction of buckling strength as well as to keep into account all peculiar features of 
these materials. In this view, a proposal regarding an alternative formulation for buckling curves is 
being developing within the activity of CEN/TC250 SC9 Committee and is at the moment under dis-
cussion (Mazzolani & Mandara, 2003). Hopefully, such proposal will be shortly accepted for the in-
troduction into the new part 1-5 “Supplementary rules for shell structures” of Eurocode 9. 
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Figure 6 – Comparison of EC3 buckling curves with simulation data: torsion (shear). 
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